Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Chemosphere ; 351: 141239, 2024 Mar.
Article En | MEDLINE | ID: mdl-38272134

Mercury (Hg) and vitamin A (VitA) are two environmental factors with potential health impacts, especially during pregnancy and early childhood. Fish and seafood may present elevated levels of methylmercury (MeHg), the major Hg derivative, and VitA. This study aimed to evaluate the transgenerational effects of exposure to MeHg and/or VitA on epigenetic and toxicological parameters in a Wistar rat model. Our findings revealed persistent toxicological effects in generations F1 and F2 following low/mild doses of MeHg and/or VitA exposure during dams' (F0) gestation and breastfeeding. Toxicological effects observed in F2 included chronic DNA damage, bone marrow toxicity, altered microglial content, reduced neuronal signal, and diminished male longevity. Sex-specific patterns were also observed. Co-exposure to MeHg and VitA showed both synergistic and antagonistic effects. Additionally, the study demonstrated that MeHg and VitA affected histone methylation and caused consistent effects in F2. While MeHg exposure has been associated with transgenerational inheritance effects in other organisms, this study provides the first evidence of transgenerational inheritance of MeHg and VitA-induced toxicological effects in rodents. Although the exact mechanism is not yet fully understood, these findings suggest that MeHg and VitA may perpetuate their impacts across generations. The study highlights the need for remedial policies and interventions to mitigate the potential health problems faced by future generations exposed to MeHg or VitA. Further research is warranted to investigate the transgenerational effects beyond F2 and determine the matrilineal or patrilineal inheritance patterns.


Mercury , Methylmercury Compounds , Humans , Child, Preschool , Rats , Animals , Pregnancy , Female , Male , Methylmercury Compounds/toxicity , Rats, Wistar , Vitamin A , Methylation
2.
Mol Psychiatry ; 28(2): 871-882, 2023 02.
Article En | MEDLINE | ID: mdl-36280751

Molecular and functional abnormalities of astrocytes have been implicated in the etiology and pathogenesis of schizophrenia (SCZ). In this study, we examined the proteome, inflammatory responses, and secretome effects on vascularization of human induced pluripotent stem cell (hiPSC)-derived astrocytes from patients with SCZ. Proteomic analysis revealed alterations in proteins related to immune function and vascularization. Reduced expression of the nuclear factor kappa B (NF-κB) p65 subunit was observed in these astrocytes, with no incremental secretion of cytokines after tumor necrosis factor alpha (TNF-α) stimulation. Among inflammatory cytokines, secretion of interleukin (IL)-8 was particularly elevated in SCZ-patient-derived-astrocyte-conditioned medium (ASCZCM). In a chicken chorioallantoic membrane (CAM) assay, ASCZCM reduced the diameter of newly grown vessels. This effect could be mimicked with exogenous addition of IL-8. Taken together, our results suggest that SCZ astrocytes are immunologically dysfunctional and may consequently affect vascularization through secreted factors.


Induced Pluripotent Stem Cells , Schizophrenia , Humans , Induced Pluripotent Stem Cells/metabolism , Astrocytes/metabolism , Proteomics , Schizophrenia/metabolism , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Phenotype
3.
Nutr Neurosci ; 25(5): 1026-1040, 2022 May.
Article En | MEDLINE | ID: mdl-33078695

Obesity is a health problem that has been associated with neuroinflammation, decreased cognitive functions and development of neurodegenerative diseases. Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor and non-motor abnormalities, increased brain inflammation, α-synuclein protein aggregation and dopaminergic neuron loss that is associated with decreased levels of tyrosine hydroxylase (TH) in the brain. Diet-induced obesity is a global epidemic and its role as a risk factor for PD is not clear. Herein, we showed that 25 weeks on a high-fat diet (HFD) promotes significant alterations in the nigrostriatal axis of Wistar rats. Obesity induced by HFD exposure caused a reduction in TH levels and increased TH phosphorylation at serine 40 in the ventral tegmental area. These effects were associated with insulin resistance, increased tumor necrosis factor-α levels, oxidative stress, astrogliosis and microglia activation. No difference was detected in the levels of α-synuclein. Obesity also induced impairment of locomotor activity, total mobility and anxiety-related behaviors that were identified in the open-field and light/dark tasks. There were no changes in motor coordination or memory. Together, these data suggest that the reduction of TH levels in the nigrostriatal axis occurs through an α-synuclein-independent pathway and can be attributed to brain inflammation, oxidative/nitrosative stress and metabolic disorders induced by obesity.


Encephalitis , Parkinson Disease , Animals , Brain/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Encephalitis/metabolism , Neuroinflammatory Diseases , Obesity/etiology , Obesity/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism
4.
Glia ; 68(7): 1396-1409, 2020 07.
Article En | MEDLINE | ID: mdl-32003513

Astrogliosis comprises a variety of changes in astrocytes that occur in a context-specific manner, triggered by temporally diverse signaling events that vary with the nature and severity of brain insults. However, most mechanisms underlying astrogliosis were described using animals, which fail to reproduce some aspects of human astroglial signaling. Here, we report an in vitro model to study astrogliosis using human-induced pluripotent stem cells (iPSC)-derived astrocytes which replicate temporally intertwined aspects of reactive astrocytes in vivo. We analyzed the time course of astrogliosis by measuring nuclear translocation of NF-kB, production of cytokines, changes in morphology and function of iPSC-derived astrocytes exposed to TNF-α. We observed NF-kB p65 subunit nuclear translocation and increased gene expression of IL-1ß, IL-6, and TNF-α in the first hours following TNF-α stimulation. After 24 hr, conditioned media from iPSC-derived astrocytes exposed to TNF-α exhibited increased secretion of inflammation-related cytokines. After 5 days, TNF-α-stimulated cells presented a typical phenotype of astrogliosis such as increased immunolabeling of Vimentin and GFAP and nuclei with elongated shape and shrinkage. Moreover, ~50% decrease in aspartate uptake was observed during the time course of astrogliosis with no evident cell damage, suggesting astroglial dysfunction. Together, our results indicate that human iPSC-derived astrocytes reproduce canonical events associated with astrogliosis in a time dependent fashion. The approach described here may contribute to a better understanding of mechanisms governing human astrogliosis with potential applicability as a platform to uncover novel biomarkers and drug targets to prevent or mitigate astrogliosis associated with human brain disorders.


Astrocytes/drug effects , Astrocytes/metabolism , Induced Pluripotent Stem Cells/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Brain/drug effects , Brain/metabolism , Brain Diseases/metabolism , Cytokines/metabolism , Glial Fibrillary Acidic Protein/metabolism , Gliosis/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Intermediate Filaments/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vimentin/metabolism
5.
Neurochem Int ; 125: 25-34, 2019 05.
Article En | MEDLINE | ID: mdl-30739037

Vitamin A (retinol) is involved in signaling pathways regulating gene expression and was postulated to be a major antioxidant and anti-inflammatory compound of the diet. Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by loss of nigral dopaminergic neurons, involving oxidative stress and pro-inflammatory activation. The aim of the present study was to evaluate the neuroprotective effects of retinol oral supplementation against 6-hydroxydopamine (6-OHDA, 12 µg per rat) nigrostriatal dopaminergic denervation in Wistar rats. Animals supplemented with retinol (retinyl palmitate, 3000 IU/kg/day) during 28 days exhibited increased retinol content in liver, although circulating retinol levels (serum) were unaltered. Retinol supplementation did not protect against the loss of dopaminergic neurons (assessed through tyrosine hydroxylase immunofluorescence and Western blot). Retinol supplementation prevented the effect of 6-OHDA on Iba-1 levels but had no effect on 6-OHDA-induced GFAP increase. Moreover, GFAP levels were increased by retinol supplementation alone. Rats pre-treated with retinol did not present oxidative damage or thiol redox modifications in liver, and the circulating levels of TNF-α, IL-1ß, IL-6 and IL-10 were unaltered by retinol supplementation, demonstrating that the protocol used here did not cause systemic toxicity to animals. Our results indicate that oral retinol supplementation is not able to protect against 6-OHDA-induced dopaminergic denervation, and it may actually stimulate astrocyte reactivity without altering parameters of systemic toxicity.


Disease Models, Animal , Dopaminergic Neurons/drug effects , Nerve Degeneration/chemically induced , Nerve Degeneration/drug therapy , Sympathectomy, Chemical/methods , Vitamin A/administration & dosage , Administration, Oral , Animals , Dopaminergic Neurons/metabolism , Male , Nerve Degeneration/metabolism , Organ Culture Techniques , Rats , Rats, Wistar , Treatment Outcome
6.
Mol Neurobiol ; 56(5): 3079-3089, 2019 May.
Article En | MEDLINE | ID: mdl-30094805

The receptor for advanced glycation endproducts (RAGE) is a transmembrane, immunoglobulin-like receptor that interacts with a broad repertoire of extracellular ligands. RAGE belongs to a family of cell adhesion molecules and is considered a key receptor in the inflammation axis and a potential contributor to the neurodegeneration. The present study aimed to investigate the content and cell localization of RAGE in the brain of Wistar rats subjected to systemic inflammation induced by a single dose of lipopolysaccharide (LPS, 5 mg/kg, i.p.). Fifteen days after LPS administration, the content of RAGE was analyzed in the prefrontal cortex (PFC), hippocampus (HIPP), cerebellum (CB), and substantia nigra (SN) were investigated. RAGE levels increased in all structures, except HIPP; however, immunohistochemistry analysis demonstrated that the cell site of RAGE expression changed from blood vessel-like structures to neuronal cells in all brain areas. Besides, the highest level of RAGE expression was found in SN. Immunofluorescence analysis in SN confirmed that RAGE expression was mainly co-localized in endothelial cells (RAGE/PECAM-1 co-staining) in untreated animals, while LPS-treated animals had RAGE expression predominantly in dopaminergic neurons (RAGE/TH co-staining). Decreased TH levels, as well as increased pro-inflammatory markers (TNF-α, IL-1ß, Iba-1, GFAP, and phosphorylated ERK1/2) in SN, occurred concomitantly to RAGE stimulation in the same site. These results suggest a role for RAGE in the establishment of a neuroinflammation-neurodegeneration axis that develops as a long-term response to systemic inflammation by LPS.


Brain/metabolism , Brain/pathology , Endothelial Cells/metabolism , Inflammation/metabolism , Neurons/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Biomarkers/metabolism , Dopaminergic Neurons/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , Male , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Rats, Wistar , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
7.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 317-328, 2019 03.
Article En | MEDLINE | ID: mdl-30529222

Retinoic acid (RA) promotes differentiation in multiple neurogenic cell types by promoting gene reprogramming through retinoid receptors and also by inducing cytosolic signaling events. The nuclear RXR receptors are one of the main mediators of RA cellular effects, classically by joining the direct receptors of RA, the nuclear RAR receptors, in RAR/RXR dimers which act as transcription factors. Distinct RXR genes lead to RXRα, RXRß and RXRγ subtypes, but their specific roles in neuronal differentiation remain unclear. We firstly investigated both RXRs and RARs expression profiles during RA-mediated neuronal differentiation of human neuroblastoma cell line SH-SY5Y, and found varying levels of retinoid receptors transcript and protein contents along the process. In order to understand the roles of the expression of distinct RXR subtypes to RA signal transduction, we performed siRNA-mediated silencing of RXRα and RXRß during the first stages of SH-SY5Y differentiation. Our results showed that RXRα is required for RA-induced neuronal differentiation of SH-SY5Y cells, since its silencing compromised cell cycle arrest and prevented the upregulation of neuronal markers and the adoption of neuronal morphology. Besides, silencing of RXRα affected the phosphorylation of ERK1/2. By contrast, silencing of RXRß improved neurite extension and led to increased expression of tau and synaptophysin, suggesting that RXRß may negatively regulate neuronal parameters related to neurite outgrowth and function. Our results indicate distinct functions for RXR subtypes during RA-dependent neuronal differentiation and reveal new perspectives for studying such receptors as clinical targets in therapies aiming at restoring neuronal function.


Neurites/metabolism , Retinoid X Receptor alpha/physiology , Retinoid X Receptor beta/physiology , Animals , Cell Cycle Checkpoints/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Dopaminergic Neurons/physiology , Gene Expression Regulation, Neoplastic/drug effects , Humans , MAP Kinase Signaling System/physiology , Neuroblastoma/genetics , Neuroblastoma/metabolism , Rats , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Retinoic Acid/metabolism , Receptors, Retinoic Acid/physiology , Retinoid X Receptor alpha/metabolism , Retinoid X Receptor beta/metabolism , Retinoid X Receptors , Signal Transduction/drug effects , Transcriptional Activation , Tretinoin/metabolism , Tretinoin/pharmacology , Tumor Cells, Cultured
8.
Sci Rep ; 7(1): 8795, 2017 08 18.
Article En | MEDLINE | ID: mdl-28821831

The receptor for advanced glycation endproducts (RAGE) is a pattern-recognition receptor associated with inflammation in most cell types. RAGE up-regulates the expression of proinflammatory mediators and its own expression via activation of NF-kB. Recent works have proposed a role for RAGE in Parkinson's disease (PD). In this study, we used the multimodal blocker of RAGE FPS-ZM1, which has become available recently, to selectively inhibit RAGE in the substantia nigra (SN) of rats intracranially injected with 6-hydroxydopamine (6-OHDA). FPS-ZM1 (40 µg per rat), injected concomitantly with 6-OHDA (10 µg per rat) into the SN, inhibited the increase in RAGE, activation of ERK1/2, Src and nuclear translocation of NF-kB p65 subunit in the SN. RAGE inhibition blocked glial fibrillary acidic protein and Iba-1 upregulation as well as associated astrocyte and microglia activation. Circulating cytokines in serum and CSF were also decreased by FPS-ZM1 injection. The loss of tyrosine hydroxylase and NeuN-positive neurons was significantly inhibited by RAGE blocking. Finally, FPS-ZM1 attenuated locomotory and exploratory deficits induced by 6-OHDA. Our results demonstrate that RAGE is an essential component in the neuroinflammation and dopaminergic denervation induced by 6-OHDA in the SN. Selective inhibition of RAGE may offer perspectives for therapeutic approaches.


Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Oxidopamine/adverse effects , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Substantia Nigra/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Dopaminergic Neurons/pathology , Inflammation Mediators/metabolism , Male , NF-kappa B/metabolism , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rats , Substantia Nigra/drug effects , Substantia Nigra/pathology , src-Family Kinases/metabolism
9.
Brain Behav Immun ; 62: 124-136, 2017 May.
Article En | MEDLINE | ID: mdl-28088642

Systemic inflammation induces transient or permanent dysfunction in the brain by exposing it to soluble inflammatory mediators. The receptor for advanced glycation endproducts (RAGE) binds to distinct ligands mediating and increasing inflammatory processes. In this study we used an LPS-induced systemic inflammation model in rats to investigate the effect of blocking RAGE in serum, liver, cerebrospinal fluid (CSF) and brain (striatum, prefrontal cortex, ventral tegmental area and substantia nigra). Intraperitoneal injection of RAGE antibody (50µg/kg) was followed after 1h by a single LPS (5mg/kg) intraperitoneal injection. Twenty-four hours later, tissues were isolated for analysis. RAGE antibody reduced LPS-induced inflammatory effects in both serum and liver; the levels of proinflammatory cytokines (TNF-α, IL-1ß) were decreased and the phosphorylation/activation of RAGE downstream targets (ERK1/2, IκB and p65) in liver were significantly attenuated. RAGE antibody prevented LPS-induced effects on TNF-α and IL-1ß in CSF. In striatum, RAGE antibody inhibited increases in IL-1ß, Iba-1, GFAP, phospho-ERK1/2 and phospho-tau (ser202), as well as the decrease in synaptophysin levels. These effects were caused by systemic RAGE inhibition, as RAGE antibody did not cross the blood-brain barrier. RAGE antibody also prevented striatal lipoperoxidation and activation of mitochondrial complex II. In conclusion, blockade of RAGE is able to inhibit inflammatory responses induced by LPS in serum, liver, CSF and brain.


Antibodies/pharmacology , Corpus Striatum/drug effects , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Liver/drug effects , Receptor for Advanced Glycation End Products/immunology , Animals , Antibodies/therapeutic use , Corpus Striatum/metabolism , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Liver/metabolism , Male , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
...